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Augmented Reality Interface for Smart Home Control using
SSVEP-BCI and Eye Gaze

Felix Putze1, Dennis Weiß1, Lisa-Marie Vortmann1 and Tanja Schultz1

Abstract— In this paper, we investigate the integration of eye-
tracking and a Brain-Computer Interface into an Augmented
Reality system to control a smart home environment. Through
a head-mounted display, we present context-dependent control
elements which the user selects by directing attention towards
them. We show that the combination of both modalities leads to
the most robust detection of selections and an interface which
is accepted by its users.

I. INTRODUCTION

Augmented Reality (AR) interfaces make their way into
many applications in various domains. While AR offers
new opportunities to design user interfaces, they also come
with additional challenges. One of these challenges is the
limited communication channel which is provided to the user
for sending input to the application. In contrast to Virtual
Reality applications, users are not typically equipped with a
controller as they need their hands free to interact with the
physical world. For the same reason, gestures are often not
suitable as input modality. Speech input is a good choice
for text entry but does not convey spatial information well
and is not appropriate in all use cases (e.g. when in a noisy
environment or when required to stay quiet). Thus, none of
the mentioned modalities on its own is appropriate in all
situations and thus more options should be considered as
alternatives or for combination. Great potential for this lies
in the processing of biosignals, for example to capture brain
activity and gaze.

One of the most successful paradigms for implementing
Brain Computer Interfaces (BCIs) is the SSVEP-BCI, which
induces Steady State Visually Evoked Potentials (SSVEPs) in
the brain through the presentation of a flickering visual stim-
ulus at a specific frequency. The frequency-specific SSVEP
response, which occurs when such a stimulus is attended,
can be captured by measuring and evaluating an electroen-
cephalography (EEG) signal. These responses can be used
for a user interface by tying different options to different
frequencies and asking the user to overtly or covertly direct
their attention towards to the desired option. SSVEP-BCI
have been used successfully to control a music player [1]
and other user interfaces, for human-robot interaction [2], for
text entry [3], game control [4], and many other applications.

Another modality to explore as user input, which also
responds to the user attending a certain stimulus, is eye
gaze. Gaze can be captured through an eye tracker, which
in the case of an AR head-mounted display (AR-HMD)
has to be mobile and lightweight. As BCI and eye tracker

1All authors are with Cognitive Systems Lab, University of Bremen,
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measure very different correlates of attention, a combination
of both modalities has the potential of increased classification
performance compared to the individual modalities.

In this paper, we transfer the SSVEP-BCI approach, sup-
ported by a mobile eye tracker, to an AR scenario. For this
purpose, we explore the control of a smart home environment
through this user interface. When the user navigates through
the environment, the AR blends context-sensitive virtual
control elements into the field of view which allow the user to
control the environment by simply attending the appropriate
element. This leaves the user’s hands and voice free for other
tasks.

Our contributions in this paper are 1) the systematic inte-
gration of a training-free, self-paced SSVEP-BCI in an AR-
based smart home control, 2) the combination of BCI with
eye tracking for increased robustness in a mobile setting, and
3) the evaluation of an end-to-end system for classification
performance and usability.

II. RELATED WORK

In recent years, different BCI paradigms have been in-
vestigated as interfaces for AR. Si-Mohammed et al. [5]
give an overview over different approaches and their analysis
showed that mostly P300- and SSVEP-based BCIs have been
employed for this purpose. The dominant application is robot
and prothesis control, as well as neurofeedback. Most of
the identified systems used video-see-through AR, which is
based on capturing the real world through a camera which
is then presented to the user through a virtual reality HMD.
Only a few systems employed optical-see-through, as would
be necessary for a mobile system which depends on natural
vision and field-of-view.

As an example for a BCI-based environment control
through AR, Wang et al. [6] used an SSVEP-based AR
interface to control the flight of a drone. Escobedo et al. [7]
overlayed a grid for a P300-based BCI for telepresence
control of a robot. Si-Mohammed et al. [8] used an AR
interface to control the movement of a robotic platform. In
their study, they systematically explored different ways of
integrating SSVEP stimuli in the environment in relation to
the robot and also investigated the effect of motion on the
BCI performance, given that an AR scene is rarely static.

There exist some earlier approaches to employ an SSVEP-
BCI in an AR setting for mobile smart room control. An early
example is the work by Takano et al.[9], who demonstrated
the feasibility of SSVEP classification with targets presented
through an AR interface. They showed that classification
performance was no worse than for targets presented on



a normal computer screen. Another feasibility study by
Faller et al. [10] investigated how SSVEP markers can be
situated in an AR scene and used for controlling a table-
based navigation task. Their result showed that participants
could navigate variable mazes successfully. Saboor et al. [11]
implemented a mobile SSVEP-BCI for smart home control
in which controllable targets were identified by automatically
detected QR codes attached to them. They showed that
participants were able to identify the majority of physi-
cally situated targets (e.g. controlling lights, an elevator)
distributed throughout the building, i.e. requiring mobility.
Angrisani et al. [12] performed a similar analysis for a
hands-free robot operation in an industrial setting. Coogan et
al. [13] combined Unity and the BCI2000 software to provide
a template for control of Internet-of-Things devices (such
as smart light, television, or thermostat) via BCI interfaces
in virtual reality. The authors claimed that this approach
allowed the rapid integration of additional tasks (due to
the use of established software components) and a higher
motivation for users compared to traditional BCI interfaces.
Evain et al. [14] showed that an SSVEP-BCI could be used
even when the user was distracted by a different task that
induces additional mental workload. This is an important
prerequisite for using BCI for mobile smart home control,
as such a scenario will often comprise operating smart room
components as part of a more complex task.

A number of researcher have looked into the combination
of SSVEP BCI with gaze tracking for improved classification
performance. While in many cases, a gaze-based approach
may simply be superior to an SSVEP-BCI, this may not
necessarily be the case in situations where we use a mobile
eye tracker, such as when using a HMD for virtual or
augmented reality, due to challenges in maintaining a valid
calibration. Kishore at al. [15] showed that both eye tracking
and BCI can be employed for reliable target detection to
control a humanoid robot. Ma et al. [16] showed that the
combination of both modalities for text entry in VR resulted
in a significantly higher information transfer rate compared
to the individual modalities.

III. SYSTEM DESCRIPTION

The HoloSSVEP system is an smart home control using
the Microsoft HoloLens AR device (see Figure 1). It employs
the camera of the AR-HMD to locate the positions of con-
trollable elements within the environment, which are marked
by visual identifiers that can be automatically detected. As
AR-HMD, we chose the HoloLens device, as it can act
completely stand-alone as required for a mobile smart-home
control application.

For recording EEG, we use a the wireless g.Nautilus head-
set with active g.SCARABEO Ag/AgCl electrodes. Three
electrodes at the ocipital cortex, in locations Oz, O1, and
O2, were recorded at 500 Hz, with reference to the right
mastoid. Impedance was kept below 20k. During placement
of the AR-HMD, it was ensured that its head strap did not
touch the electrodes to avoid artifacts.

Fig. 1. Window blinds control via AR using the SSVEP-BCI paradigm in
a room where the menu allows for four operations: blinds up, blinds down,
blinds close (fins), blinds open (fins) – the operations are automatically
executed via the building’s intelligent control system.

For eye tracking, we used the Pupil Labs binocular eye
tracker with its compatibility add-on to the HoloLens. 6-
point calibration of the eye tracker was done directly through
the AR-HMD, using a Unity component provided by Pupil
Labs1. Eye tracking within AR-HMDs is challenging: The
employed eye tracker is mounted bellow the glasses of the
HMD and thus captures the eyes at a steep angle, with
eyelashes often occluding a clear image of the pupil. This is
especially challenging for users with glasses. Additionally,
even small movements of the AR-HMD after the calibration
can impede tracking performance.

The graphical user interface was implemented with Unity
and compiled and deployed as a standalone application for
the Universal Windows Platform. To ensure stable refresh
rates for presenting the flickering selection targets, we im-
plemented these as a custom blink shader at frequencies
of 4, 6, 10, and 15 Hz. For the placement of selection
targets, we used the Vuforia plugin to Unity which allows
the automatic detection and 3D localization of preregistered
images through the world camera of the AR-HMD. This
allows the convenient placement of selection targets on any
surface in the room.

The communication between all components of the
HoloSSVEP system was realized using the Lab Streaming
Layer2 middleware (LSL). One challenge was that the LSL
cannot be directly compiled for the Universal Windows
Platform, due to limitations of the provided programming
interface. To solve this issue, we implemented a HoloBridge
component which provides a custom LSL interface. The
HoloLens uses LSL to send markers indicating the activation
and deactivation of selection markers as well as their relative
position in the user’s viewport. The actual classification
(as well as data collection) is performed on a separate
computer to which EEG and eye tracker are connected. The
classification result is send to the smart home controllers as
well as back to the HoloLens to trigger a visual feedback
indicating the detected choice.

1https://github.com/pupil-labs/hmd-eyes
2https://gitlab.csl.uni-bremen.de/fkroll/LSLHoloBridge
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Fig. 2. System diagram of HoloSSVEP, components in grey run locally on the HMD, the other components run on a server connected through Wifi.

As we wanted to test not only the classification perfor-
mance but also the usability of the end-to-end HoloSSVEP
system, we created several controllable smart home compo-
nents. This comprised control of the office lighting and the
window blinds (both accessed through the buildings facilities
automation interface) as well as control of a simulated TV
and a music player. Table I summarizes the four control
options available for each of these components.

TABLE I
CONTROL OPTIONS OF THE USER INTERFACE.

Light

top Light 1 on
bottom Light 1 off

left Light 2 on
right Light 1 off

Blinds

top Blinds Up
bottom Blinds down

left Blinds open
right Blinds close

TV/Music Player

top Volume Up
bottom Volume Down

left Next Channel
right Previous Channel

IV. CLASSIFICATION
Controllable elements are detected in the visual field

through preregistered printed markers. When this happens,
the corresponding control elements are presented, a window
with a length of 3 s is extracted, containing both EEG and
eye tracking data. The window is classified into one of
four classes, corresponding to the four different selection
targets present in each selection. The two modalities are first
processed and classified independently and then combined in
a decision fusion scheme which employs the confidence of
the individual modalities.

The EEG data is filtered with a bandpass filter between
1 Hz and 35 Hz and then processed with Canonical Correla-
tion Analysis (CCA). CCA is a method that calculates linear
combinations (the canonical components) of two sets of
variables to a space which maximize the pairwise correlation
between the canonical components. For an SSVEP-BCI, the
two sets of variables are the EEG signals on the one hand
and a group of templates for each class on the other hand.
The class corresponding to the highest correlation coefficient
is returned as classification result. Equation 1 shows how
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Fig. 3. Illustration of nearest neighbor classification for eye tracking data.

we define the template representing the target frequency f
and the first two harmonics, with both a sinus and cosinus
term to reflect potential phase shifts. This approach has the
benefit of being completely training-free as the templates can
be predefined once and do not require person- or session-
specific adaptation.

y(t) =


sin(2πft)
cos(2πft)
sin(2π2ft)
cos(2π2ft)
sin(2π3ft)
cos(2π3ft)

 , t =
1

S
, . . . ,

T

S
(1)

For classifying the eye tracking data, we employ a nearest
neighbor approach. For each gaze point within the classifica-
tion window, we project it to the plane in which all selection
targets are situated and assign it to the target with the lowest
Euclidean distance. The classification result is the class to
which most gaze points are assigned to.

For combining the two modalities in classification, we
employ a fusion scheme which uses confidence estimates:
If the maximum CCA coefficient is greater than a threshold
(tCCA = 0.4), the classifier relies on the BCI result (path
A, Figure 4). Otherwise, the gaze result is returned if the
sample size (SS) is high enough and the gaze confidence
(path B), measured as relative frequency of the selected class,
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Use BCI
Result

Use Gaze 
Result

D) else

A) CCA coefficient > 0.4

B) SS > 20 and kNN conf. > 70%

C) CCA diff > 0.15

Fig. 4. Fusion algorithm for confidence-based combination of BCI and
eye gaze classification.

is above a threshold (tgaze = 0.7). If this criterion also fails,
the CCA score is again evaluated (path C), but this time the
relative difference in CCA score between best and second-
best option is evaluated against a threshold (tdiff = 0.15).
If this criterion also fails, the fusion classifier will default to
the result of the gaze classifier (path D).

This fusion approach can be turned into a self-paced
selection, i.e. one which does not operate on a forced choice
paradigm between the four classes but which allows the
user to avoid a selection, if desired. Similar to Cecotti et
al. [17], we define a threshold on CCA score to determine no-
selections, but extend this approach to cover both modalities.
This can be operationalized by re-labeling path D (see
Figure 4) in the fusion algorithm to “no selection”.

V. EVALUATION

For evaluation, we performed a user study with 12 par-
ticipants, of which one was excluded from later analysis
due to technical difficulties. All participants were university
students and gave their written consent to participate in
the study. After EEG and eye tracking calibration, users
performed a training run and then went through 36 trials
in which they were asked to select a specific option of a
specific target. Order of target objects and target options
were pseudo-randomized. The experiment was executed in
a prepared office of the Cognitive Systems Lab at the
University of Bremen. Participants were standing during the
experiment and switching between different target objects
(light, blinds, TV, or music player) required moving through
the office (ca. 4 by 5 meters). For nine of the participants,
we also recorded a short segment of trials in which they
were instructed to look at a target marker without making
a selection. We collected this data to evaluate the self-
pacing aspect of the BCI. These trials were not part of the
online evaluation and the usability study but are investigated
separately.
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Fig. 5. Boxplot of classification accuracy for the two individual modalities
and the fusion algorithm.

After the completion of the experiment, participants an-
swered a System Usability Scale questionnaire [18] to eval-
uate the systems usability. Participation was concluded with
a short interview on usage and user satisfaction.

Figure 5 shows the achieved classification accuracy for
both modalities individually as well as for the fusion algo-
rithm. Chance level accuracy (i.e. relative frequency of the
majority class) is 33.3%3.

In Table II, we further show the individual classifica-
tion accuracy scores for all participants. This detailed look
shows many different cases of performance combinations:
For participants 5 and 6, both modalities yield a near-
perfect classification performance. For participants 1 and
3, the BCI performance is substantially inferior to the eye
tracking performance; for participants 7 and 10, it is the other
way round. This result shows that for robust classification,
both modalities are required. For these examples, the fusion
scheme is able to leverage the confidence metrics of the
individual classifiers to mitigate the effect of the weaker
classifier. Finally, for participant 8, both modalities fail to
produce an acceptable classification performance, which may
be a hint at the system not being able to draw that specific
user’s attention towards the targets.

Eyetracking suffers from challenges of calibration, due
to challenging positioning, and users with glasses. Another
challenge is that the calibration is performed at the beginning
of a session. Even slight movements of the HMD to which
the eye tracker is attached can invalidate the calibration
results.

Of course, the results depend on thresholds to chose
between different paths in fusion method. To investigate
whether the observed results are not just a result of the
specific parameter choices in our evaluation, we performed
a parameter optimization on the recorded sessions through
grid search. The result shows that while not all parameters

3due to logical constraints (i.e. cannot move blinds up twice without
moving them down in between), not all options were presented equally
often.
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Fig. 6. SUS result on an absolute scale following [18]

TABLE II
INDIVIDUAL CLASSIFICATION ACCURACY FOR ALL STUDY

PARTICIPANTS

Participant Acc. BCI Acc. ET Acc. Combined
1 50% 94.4% 88.9%
2 80.6% 91.7% 88.9%
3 66.7% 100% 100%
4 80.6% 80.6% 86.1%
5 100% 88.9% 100%
6 94.4% 100% 97.2%
7 91.7% 58.3% 86.1%
8 48.6% 40% 42.9%
9 66.7% 86.1% 91.7%
10 100% 63.9% 100%
11 58.3% 100% 100%

Avg. 76.1% 82.1% 89.3%

were chosen optimally a-priori in the user study, the relation
between the individual modalities and the fusion algorithm
does not change. This shows that the reported results are not
susceptible to parameter tuning.

Finally, we investigated whether all paths of the fusion
algorithm are actually necessary for the achieved classifica-
tion result. Table III presents the frequency with which the
different paths are chosen to produce the fusion result, as
well as the average classification precision along this path.
The results illustrate that each path contributes to final result
(with path C being chosen least frequently in 15% of all
cases). We also observe that the secondary options C and
D lead to lower classification performance, which indicates
that the confidence metrics are actually able to identify the
more challenging trials.

To evaluate the self-pacing aspect of the interface, we also
evaluated the classifier on the additional trials that do not
contain any selection. As described in Section IV, we modify
the original fusion classifier such that the “default” path D
is re-labeled to “no selection”. As a result of this process,
we achieve a classification accuracy of 72% for the original
four classes and a classification accuracy of 85% for the
new trials without selection. This shows that it is possible to
create a self-paced selection while still achieving satisfiable

TABLE III
FREQUENCY AND PRECISION FOR EACH PATH IN THE FUSION

ALGORITHM

Path Frequency (abs.) Frequency (rel.) Precision
A 137 34.7% 97.8%
B 102 25.8% 95.1%
C 59 14.9% 86.4%
D 97 24.5% 73.2%

performance in the original task.
For evaluation, we did not only look at the objective clas-

sification performance, but also at the subjective assessment
through its participants. Figure 6 shows the achieved average
score on the System Usability Scale (SUS), displayed with an
absolute grade scale [18], which allows an assessment of the
usability of the interface without an immediate comparison
system. The SUS contains generic usability items and thus
allows the evaluation of a broad range of interactive systems.
The result shows that the HoloSSVEP system achieves a
“good” usability, which constitutes the basic grade for an
“acceptable” system. This means that the created interface
can actually be employed in its current form for smart
home control. The lowest average score was assigned to
the question corresponding to wearing comfort, achieving
only a score of 1.25 on a scale from 0 to 4. This was also
confirmed in the closing interviews by multiple participants.
A conclusion from this result is that further development
into more lightweight and comfortable headsets is needed to
further increase acceptance.

VI. CONCLUSIONS

In this paper, we showed the use of a multimodal user
interface using EEG and eye tracking for silent, hands-free
smart room control. The presented system works training-
free, is quick to set up, and achieves high classification
accuracy through the combination of both input modalities.
Consequently, users rate the system as being of “good”
usability. Results indicate that a major usability concern is
the comfort of wearing two headsets; an AR headset with
integrated EEG electrodes at the back of the head (to capture
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brain activity from the occipital cortex) would mitigate this
problem.

A challenge to address in future research is the fact that the
smart home environment is operated in the context of other
tasks and cognitive processes. The SSVEP targets, which
are superimposed on the scene for selection, are designed
to draw the user’s attention and thus are distracting if the
user is not focusing on them. While an approach for self-
paced BCI can avoid false selections, the presence of the
targets alone may already disrupt internal thought processes.
In future work, we will investigate approaches for attention
modeling [19] to discriminate internal from external attention
direction and avoid the presentation of undesired SSVEP
targets in the first place.
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